The position of gnetales among seed plants: overcoming pitfalls of chloroplast phylogenomics.
نویسندگان
چکیده
The phylogenetic position of Gnetales is one of the most contentious issues in the seed plant systematics. To elucidate the Gnetales position, an improved amino acid substitution matrix was estimated based on 64 chloroplast (cp) genomes and was applied to cp genome data including all three lineages of Gnetales in maximum likelihood analyses of proteins. Although the initial analysis strongly supported the sister relation of Gnetales with Cryptomeria (Cupressophyta or non-Pinaceae conifers) (the "Gnecup" hypothesis), the support seems to be caused by a long-branch attraction (LBA) artifact. Indeed, by removing fastest evolving proteins that are most likely associated with the LBA, the support drastically declined. Furthermore, another analysis of partial genome data with dense taxon sampling of conifers showed that, in psbC, rpl2, and rps7 proteins, there are many parallel amino acid substitutions between the lineages leading to Gnetales and to Cryptomeria, and by further excluding these three genes, the sister relation of Gnetales with Pinaceae (the "Gnepine" hypothesis) became supported. Overall, our analyses indicate that the LBA and parallel substitutions cause a seriously biased inference of phylogenetic position of Gnetales with the cp genome data.
منابع مشابه
Systematic Error in Seed Plant Phylogenomics
Resolving the closest relatives of Gnetales has been an enigmatic problem in seed plant phylogeny. The problem is known to be difficult because of the extent of divergence between this diverse group of gymnosperms and their closest phylogenetic relatives. Here, we investigate the evolutionary properties of conifer chloroplast DNA sequences. To improve taxon sampling of Cupressophyta (non-Pinace...
متن کاملError, bias, and long-branch attraction in data for two chloroplast photosystem genes in seed plants.
Sequences of two chloroplast photosystem genes, psaA and psbB, together comprising about 3,500 bp, were obtained for all five major groups of extant seed plants and several outgroups among other vascular plants. Strongly supported, but significantly conflicting, phylogenetic signals were obtained in parsimony analyses from partitions of the data into first and second codon positions versus thir...
متن کاملSeed plant phylogeny inferred from all three plant genomes: monophyly of extant gymnosperms and origin of Gnetales from conifers.
Phylogenetic relationships among the five groups of extant seed plants are presently quite unclear. For example, morphological studies consistently identify the Gnetales as the extant sister group to angiosperms (the so-called "anthophyte" hypothesis), whereas a number of molecular studies recover gymnosperm monophyly, and few agree with the morphology-based placement of Gnetales. To better res...
متن کاملPhylogeny of seed plants based on evidence from eight genes.
Relationships among the five groups of extant seed plants (cycads, Ginkgo, conifers, Gnetales, and angiosperms) remain uncertain. To explore relationships among groups of extant seed plants further and to attempt to explain the conflict among molecular data sets, we assembled a data set of four plastid (cpDNA) genes (rbcL, atpB, psaA, and psbB), three mitochondrial (mtDNA) genes (mtSSU, coxI, a...
متن کاملMultigene Phylogeny of the Green Lineage Reveals the Origin and Diversification of Land Plants
The Viridiplantae (green plants) include land plants as well as the two distinct lineages of green algae, chlorophytes and charophytes. Despite their critical importance for identifying the closest living relatives of land plants, phylogenetic studies of charophytes have provided equivocal results [1-5]. In addition, many relationships remain unresolved among the land plants, such as the positi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular biology and evolution
دوره 27 12 شماره
صفحات -
تاریخ انتشار 2010